A Role for Set1/MLL-Related Components in Epigenetic Regulation of the Caenorhabditis elegans Germ Line

نویسندگان

  • Tengguo Li
  • William G. Kelly
چکیده

The methylation of lysine 4 of Histone H3 (H3K4me) is an important component of epigenetic regulation. H3K4 methylation is a consequence of transcriptional activity, but also has been shown to contribute to "epigenetic memory"; i.e., it can provide a heritable landmark of previous transcriptional activity that may help promote or maintain such activity in subsequent cell descendants or lineages. A number of multi-protein complexes that control the addition of H3K4me have been described in several organisms. These Set1/MLL or COMPASS complexes often share a common subset of conserved proteins, with other components potentially contributing to tissue-specific or developmental regulation of the methyltransferase activity. Here we show that the normal maintenance of H3K4 di- and tri-methylation in the germ line of Caenorhabditis elegans is dependent on homologs of the Set1/MLL complex components WDR-5.1 and RBBP-5. Different methylation states that are each dependent on wdr-5.1 and rbbp-5 require different methyltransferases. In addition, different subsets of conserved Set1/MLL-like complex components appear to be required for H3K4 methylation in germ cells and somatic lineages at different developmental stages. In adult germ cells, mutations in wdr-5.1 or rbbp-5 dramatically affect both germ line stem cell (GSC) population size and proper germ cell development. RNAi knockdown of RNA Polymerase II does not significantly affect the wdr-5.1-dependent maintenance of H3K4 methylation in either early embryos or adult GSCs, suggesting that the mechanism is not obligately coupled to transcription in these cells. A separate, wdr-5.1-independent mode of H3K4 methylation correlates more directly with transcription in the adult germ line and in embryos. Our results indicate that H3K4 methylation in the germline is regulated by a combination of Set1/MLL component-dependent and -independent modes of epigenetic establishment and maintenance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Caenorhabditis elegans chromatin-associated proteins SET-2 and ASH-2 are differentially required for histone H3 Lys 4 methylation in embryos and adult germ cells.

Methylation of histone H3 lysine 4 (H3K4me), a mark associated with gene activation, is mediated by SET1 and the related mixed lineage leukemia (MLL) histone methyltransferases (HMTs) across species. Mammals contain seven H3K4 HMTs, Set1A, Set1B, and MLL1-MLL5. The activity of SET1 and MLL proteins relies on protein-protein interactions within large multisubunit complexes that include three cor...

متن کامل

AMPK blocks starvation-inducible transgenerational defects in Caenorhabditis elegans.

Life history events, such as traumatic stress, illness, or starvation, can influence us through molecular changes that are recorded in a pattern of characteristic chromatin modifications. These modifications are often associated with adaptive adjustments in gene expression that can persist throughout the lifetime of the organism, or even span multiple generations. Although these adaptations may...

متن کامل

Epigenetic regulation of planarian stem cells by the SET1/MLL family of histone methyltransferases

Chromatin regulation is a fundamental mechanism underlying stem cell pluripotency, differentiation, and the establishment of cell type-specific gene expression profiles. To examine the role of chromatin regulation in stem cells in vivo, we study regeneration in the freshwater planarian Schmidtea mediterranea. These animals possess a high concentration of pluripotent stem cells, which are capabl...

متن کامل

Genetic and Epigenetic landscape of Germline Stem Cells

Elucidating the critical epigenetics events involved in differentiation and reprogramming of cells to primordial germ cells (PGCs) is among the interesting issues in stem cell research. Here, I will talk about critical transcription factors and global hypomethylation in development of germ cells. Evidence strongly suggests that the earliest PGCs emerging in the E7.25 mouse embryo epiblast have...

متن کامل

Physical Interactions and Functional Coordination between the Core Subunits of Set1/Mll Complexes and the Reprogramming Factors

Differentiated cells can be reprogrammed to the pluripotent state by overexpression of defined factors, and this process is profoundly influenced by epigenetic mechanisms including dynamic histone modifications. Changes in H3K4 methylation have been shown to be the predominant activating response in the early stage of cellular reprogramming. Mechanisms underlying such epigenetic priming, howeve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2011